
Holistic Software Security

Aravind Machiry

Introduction



What this class is not about!
Writing exploits - Although, you will have better idea to do after the class.

Binary analysis - Although, the principles are similar.



● What do we mean by this?

● Why do we need this?

● How to achieve this?

Software Security



● Ensuring that the given software (e.g., a program, OS) does not have security flaws.

● Security flaws:

○ Arbitrary code execution.

○ Arbitrary read/write.

○ Denial-of-Service.

○ Race condition.

What?



● Depending on the software, flaws might be more serious.

○ Race condition on a local program `ls` v/s in Linux Kernel.

What?



● Bug: Program misbehaves and/or does not produce desired outcome.

scanf(“%d”, &i);

j = i + 2;

● Vulnerability: A bug which could be exploited to cause a security flaw.

p = malloc(j);

p[i] = ...

Bug v/s Vulnerability



Why we need Software Security?



Why we need Software Security?



Why we need Software Security?



How can we achieve this?

Securing 
Software

Make developers 
write good code.

Prove software has
no security flaws.

Prevent flaws.

Find and Fix flaws.



How can we achieve this?

Securing 
Software

Make developers 
write good code.

Prove software has
no security flaws.

Prevent flaws.

Find and Fix flaws.

This course!!



Course: Organization

Vulnerability 
Finding

Fixing 
Vulnerabilities

Propagating 
Patches

Vulnerability 
Prevention

Retroactive

Proactive



● We focus on software written in C/C++.

● Assume source code is available.

● Main focus on memory safety (but will be covering other flaws):

○ Arbitrary read/write.

● Lectures/Research Papers.

Course: Details



● Proficiency in C/C++: Ability to work with large code bases.

● OS concepts: Process isolation, User space/kernel space, virtual memory.

● Ability to read scientific papers:

○ https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf 

● Lectures/Research Papers.

Course: Expectations

https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf


● Real world impact:

○ You may find zero days in open-source software.

● Get a scientific publication.

Course: Expectations (Hopeful)



● Four Assignments (10% each = 40%).

● Midterm 1 and 2 (10% each = 20%).

● Paper presentation (10%):

○ You need to pick a paper and present to the class.

● Project (30%)

Course: Grading



● Semester long project:

○ Related to software security (Fairly open ended).

○ Research project.

○ Report, Implementation and Presentation.

● Group of 2 - 3 students (define the project accordingly).

○ Will share the potential list in email.

○ Can pick your own, but should get approval from the professor.

Project (30%)



● Solve halting problem.

● Develop IoT cloud: use idle IoT devices as compute resources.

● Implement stack canaries.

● Automatically fuzz a given program.

● Use Active Learning to find vulnerable functions.

● Runtime shuffling of stack variables.

Projects



Thank you!
➔ Course Webpage: https://purs3lab.github.io/hss/

➔ Join slack using your @purdue email (Link in webpage). 

➔ Think about your projects.

https://purs3lab.github.io/hss/

