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Introduction



What this class is not about!
Writing exploits - Although, you will have better idea to do after the class.

Binary analysis - Although, the principles are similar.



● What do we mean by this?

● Why do we need this?

● How to achieve this?

Software Security



● Ensuring that the given software (e.g., a program, OS) does not have security flaws.

● Security flaws:

○ Arbitrary code execution.

○ Arbitrary read/write.

○ Denial-of-Service.

○ Race condition.

What?



● Depending on the software, flaws might be more serious.

○ Race condition on a local program `ls` v/s in Linux Kernel.

What?



● Bug: Program misbehaves and/or does not produce desired outcome.

scanf(“%d”, &i);

j = i + 2;

● Vulnerability: A bug which could be exploited to cause a security flaw.

p = malloc(j);

p[i] = ...

Bug v/s Vulnerability



Why we need Software Security?
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How can we achieve this?

Securing 
Software

Make developers 
write good code.

Prove software has
no security flaws.

Prevent flaws.

Find and Fix flaws.
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This course!!



Course: Organization

Vulnerability 
Finding

Fixing 
Vulnerabilities

Propagating 
Patches

Vulnerability 
Prevention

Retroactive

Proactive



● We focus on software written in C/C++.

● Assume source code is available.

● Main focus on memory safety (but will be covering other flaws):

○ Arbitrary read/write.

● Lectures/Research Papers.

Course: Details



● Proficiency in C/C++: Ability to work with large code bases.

● OS concepts: Process isolation, User space/kernel space, virtual memory.

● Ability to read scientific papers:

○ https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf 

● Lectures/Research Papers.

Course: Expectations

https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf


● Real world impact:

○ You may find zero days in open-source software.

● Get a scientific publication.

Course: Expectations (Hopeful)



● Four Assignments (10% each = 40%).

● Midterm 1 and 2 (10% each = 20%).

● Paper presentation (10%):

○ You need to pick a paper and present to the class.

● Project (30%)

Course: Grading



● Semester long project:

○ Related to software security (Fairly open ended).

○ Research project.

○ Report, Implementation and Presentation.

● Group of 2 - 3 students (define the project accordingly).

○ Will share the potential list in email.

○ Can pick your own, but should get approval from the professor.

Project (30%)



● Solve halting problem.

● Develop IoT cloud: use idle IoT devices as compute resources.

● Implement stack canaries.

● Automatically fuzz a given program.

● Use Active Learning to find vulnerable functions.

● Runtime shuffling of stack variables.

Projects



Thank you!
➔ Course Webpage: https://purs3lab.github.io/hss/

➔ Join slack using your @purdue email (Link in webpage). 

➔ Think about your projects.

https://purs3lab.github.io/hss/

